
Unit 1

Java Features

Java is one of the most popular and widely used programming language.

 Java has been one of the most popular programming language for many years.
 Java is Object Oriented.
 The Java codes are first compiled into byte code (machine independent code).

Then the byte code is run on Java Virtual Machine (JVM) regardless of the
underlying architecture.

 Java syntax is similar to C/C++. But, Java codes are always written in the
form of classes and objects.

 Java is used in all kind of applications like Mobile Applications (Android is
Java based), desktop applications, web applications, client server applications,
enterprise applications and many more.

 When compared with C++, Java codes are generally more maintainable
because Java does not allow many things which may lead bad/inefficient
programming if used incorrectly. For example, non-primitives are always
references in Java. So we cannot pass large objects (like we can do in C++) to
functions, we always pass references in Java.

 When compared with Python, Java kind of fits between C++ and Python. The
programs written in Java typically run faster than corresponding Python
programs and slower than C++. Like C++, Java does static type checking, but
Python does not.

Comparision of Java with C and C++

C,C++ and Java all are the programming Languages.

 C is a procedural language,c++ is a object oriented language .Java is a
pure object oriented language.

 We can create our own package in Java(set of classes) but not in c and
c++.

 Internet programming like Frame,Applet is used in Java not in C,C++.

 Java uses compiler and interpreter but in C & C++ uses compiler only.
 We use multiple inheritance in C++ not in Java .In Java we use Interface

instead of multiple inheritance. In c there is no inheritance.
 C & C++ both are platform dependent that means you can’t run the

execute code in any other operating system.Java is a platform independent
language.

 In C we use stdio.h header file .In C++ we use iostream.h,conio.h
headerfile but Java does not support any header files.

 Pointers are used in C and C++ language, but Java will not support for
pointers.

 There is no Exception handling in C, but it supported by Java & C++.
 In C no overloading, In C++ supports overloading & in Java operator

overloading not support.

 Storage classes: auto, extern are supported by C and C++, but in Java not
supported.

Java and Internet

Java is fast, reliable and secure. From desktop to web applications, scientific

supercomputers to gaming consoles, cell phones to the Internet, Java is used in

every nook and corner.

Java Environment

Java environment includes a large number of development tools and hundreds of

classes and methods. The development tools are part of the system known as Java

Development Kit(JDK) and the classes and methods are part of the Java Standard

Library(JSL), also known as the application Programming Interface(API).

Java is one of the most popular and widely used programming language and platform. A

platform is an environment that helps to develop and run programs written in any

programming language. Java is easy to learn and its syntax is simple and easy to

understand. It is based on C++ (so easier for programmers who know C++).

Java Program structure

A Java program involves the following sections:

 Documentation Section- Suggested

 Package Statement Optional

 Import Statements Optional

 Interface Statement Optional

 Class Definition Optional

 Main Method Class Essential

o Main Method Definition

Section Description

Documenta
tion
Section

You can write a comment in this section. Comments are beneficial for the
programmer because they help them understand the code. These are optional, but
we suggest you use them because they are useful to understand the operation of the
program, so you must write comments within the program.

Package
statement

You can create a package with any name. A package is a group of classes that are
defined by a name. That is, if you want to declare many classes within one element,
then you can declare it within a package. It is an optional part of the program, i.e., if
you do not want to declare any package, then there will be no problem with it, and
you will not get any errors. Here, the package is a keyword that tells the compiler
that package has been created.

It is declared as:

package package_name;

Import
statements

This line indicates that if you want to use a class of another package, then you can
do this by importing it directly into your program.
Example:

import calc.add;

Interface
statement

Interfaces are like a class that includes a group of method declarations. It's an
optional section and can be used when programmers want to implement multiple
inheritances within a program.

Class

Definition

A Java program may contain several class definitions. Classes are the main and

essential elements of any Java program.

Main
Method
Class

Every Java stand-alone program requires the main method as the starting point of
the program. This is an essential part of a Java program. There may be many
classes in a Java program, and only one class defines the main method. Methods
contain data type declaration and executable statements.

Java Tokens
A token is the smallest element of a program that is meaningful to the compiler. Tokens can

be classified as follows:

1. Keywords

2. Identifiers

3. Literals

4. Special Symbols (Separators)

5. Operators

Keyword: Keywords are pre-defined or reserved words in a programming language.
Each keyword is meant to perform a specific function in a program. Since keywords
are referred names for a compiler, they can’t be used as variable names because by
doing so, we are trying to assign a new meaning to the keyword which is not
allowed. Java language supports following keywords:
abstract assert boolean
break byte case
catch char class
const continue default
do double else

enum exports extends
final finally float
for goto if
implements import instanceof
int interface long
module native new
open opens package

private protected provides
public requires return
short static strictfp
super switch synchronized
this throw throws
to transient transitive

try uses void
volatile while

2. Identifiers: Identifiers are used as the general terminology for naming of
variables, functions and arrays. These are user-defined names consisting of an
arbitrarily long sequence of letters and digits with either a letter or the
underscore(_) as a first character. Identifier names must differ in spelling and case
from any keywords. You cannot use keywords as identifiers; they are reserved for
special use. Once declared, you can use the identifier in later program statements
to refer to the associated value. A special kind of identifier, called a statement label,
can be used in goto statements.

3. Constants/Literals: Constants are also like normal variables. But, the only

difference is, their values can not be modified by the program once they are

defined. Constants refer to fixed values. They are also called as literals.

Constants may belong to any of the data type.

https://www.geeksforgeeks.org/list-of-all-java-keywords/
https://www.geeksforgeeks.org/java-identifiers/
https://www.geeksforgeeks.org/literals-in-java/

Syntax:
final data_type variable_name;

4. Special Symbols: The following special symbols are used in Java
having some special meaning and thus, cannot be used for some other
purpose.

 [] () {}, ; * =

1. Brackets[]: Opening and closing brackets are used as array
element reference. These indicate single and multidimensional
subscripts.

2. Parentheses(): These special symbols are used to indicate
function calls and function parameters.

3. Braces{}: These opening and ending curly braces marks the
start and end of a block of code containing more than one
executable statement.

4. comma (,): It is used to separate more than one statements
like for separating parameters in function calls.

5. semi colon : It is an operator that essentially invokes
something called an initialization list.

6. asterick (*): It is used to create pointer variable.
7. assignment operator: It is used to assign values.

5. Operators: Java provides many types of operators which can be used

according to the need. They are classified based on the functionality
they provide. Some of the types are-

1. Arithmetic Operators
2. Unary Operators
3. Assignment Operator
4. Relational Operators
5. Logical Operators
6. Ternary Operator
7. Bitwise Operators
8. instance of operator

Implementing a Java Program

Implementation of a Java application program involves a series of steps. They
include :

 Creating the program
 Compiling the program
 Running the program

Creating the program
We can create a program using any text editor.

We must save this program in a file called Javaapp.java ensuring that the file
name contains the class name properly. This file is called the source file. Note that

all Java source files will have the extension java.

Compiling the program

https://www.geeksforgeeks.org/operators-in-java/
https://www.geeksforgeeks.org/java-tokens/#Arithmetic%20Operators
https://www.geeksforgeeks.org/java-tokens/#Unary%20Operators
https://www.geeksforgeeks.org/java-tokens/#Assignment%20Operator
https://www.geeksforgeeks.org/java-tokens/#Relational%20Operators
https://www.geeksforgeeks.org/java-tokens/#Logical%20Operators
https://www.geeksforgeeks.org/java-tokens/#Ternary%20Operator
https://www.geeksforgeeks.org/java-tokens/#Bitwise%20Operators
https://www.geeksforgeeks.org/java-tokens/#instance%20of%20Operator
https://hajsoftutorial.com/java/wp-content/uploads/2014/08/new4.gif
https://hajsoftutorial.com/java/wp-content/uploads/2014/08/new4.gif

To compile the program, we must run the Java Compiler javac, with the name of
the source file on the command line
Running the program
To run the program, we must run the Java interpreter java, with the name of the

class file on the command line

Java Virtual Machine

JVM(Java Virtual Machine) acts as a run-time engine to run Java applications.
JVM is the one that actually calls the main method present in a java code. JVM is
a part of JRE(Java Runtime Environment).

Java applications are called WORA (Write Once Run Anywhere). This means a
programmer can develop Java code on one system and can expect it to run on any
other Java enabled system without any adjustment. This is all possible because of
JVM.

When we compile a .java file, .class files(contains byte-code) with the same class
names present in .java file are generated by the Java compiler. This .class file goes
into various steps when we run it. These steps together describe the whole JVM.

Constants

A constant is a name or an identifier for a fixed value. Constant are like variables,
except that once they are defined, they cannot be undefined or changed (except
magic constants). Constants are very useful for storing data that doesn't change
while the script is running.

Variables

A variable is a name given to a memory location. It is the basic unit of storage in a
program.

 The value stored in a variable can be changed during program execution.
 A variable is only a name given to a memory location, all the operations done

on the variable effects that memory location.
 In Java, all the variables must be declared before use.

We can declare variables in java as follows:

type: Type of data that can be stored in this variable.

https://contribute.geeksforgeeks.org/java-declare/

name: Name given to the variable.

In this way, a name can only be given to a memory location. It can be assigned values in two
ways

 Variable Initialization
 Assigning value by taking input

datatype: Type of data that can be stored in this variable.
variable_name: Name given to the variable.
value: It is the initial value stored in the variable.

Data Types

Data types specify the different sizes and values that can be stored in the variable.
There are two types of data types in Java:

1. Primitive data types: The primitive data types include boolean, char, byte,

short, int, long, float and double.

2. Non-primitive data types: The non-primitive data types

include Classes, Interfaces, and Arrays.

Java Primitive Data Types

In Java language, primitive data types are the building blocks of data

manipulation. These are the most basic data types available in Java language.

There are 8 types of primitive data types:

o boolean data type

o byte data type

o char data type

o short data type

o int data type

o long data type

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/java-tutorial
http://media.geeksforgeeks.org/wp-content/uploads/Variables-in-Java.png

o float data type

o double data type

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20191105122725/Primitive-Data-Types-in-Java-4.jpg

Scope of Variables

Scope refers to the visibility of variables. In other words, which parts of your program can
see or use it. Normally, every variable has a global scope. Once defined, every part of your
program can access a variable. It is very useful to be able to limit a variable's scope to a
single function.

Type casting

Type casting in Java is to cast one type, a class or interface, into another type i.e. another
class or interface. ... Type casting also comes with the risk of ClassCastException in Java,
which is quite common with a method which accepts Object type and later types cast into
more specific type.

Operators and Expressions

Java provides many types of operators which can be used according to the need.

They are classified based on the functionality they provide. Some of the types are-

1. Arithmetic Operators
2. Increment and Decrement Operator
3. Assignment Operator
4. Relational Operators
5. Logical Operators

6. Conditional Operator (Ternary Operator)
7. Bitwise Operators
8. instance of operator

Arithmetic Operators: They are used to perform simple arithmetic operations on
primitive data types.
 * : Multiplication
 / : Division
 % : Modulo
 + : Addition
 – : Subtraction

Increment and Decrement Operator
 – :Unary minus, used for negating the values.

 + :Unary plus, used for giving positive values. Only used when deliberately
converting a negative value to positive.

 ++ :Increment operator, used for incrementing the value by 1. There are two
varieties of increment operator.
 Post-Increment : Value is first used for computing the result and then

incremented.
 Pre-Increment : Value is incremented first and then result is computed.

 — : Decrement operator, used for decrementing the value by 1. There are two
varieties of decrement operator.
 Post-decrement : Value is first used for computing the result and then

decremented.
 Pre-Decrement : Value is decremented first and then result is computed.

Assignment Operator : ‘=’ Assignment operator is used to assign a value to any

variable. It has a right to left associativity, i.e value given on right hand side of
operator is assigned to the variable on the left and therefore right hand side value
must be declared before using it or should be a constant.
General format of assignment operator is,

https://www.geeksforgeeks.org/operators-in-java/#Arithmetic%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Assignment%20Operator
https://www.geeksforgeeks.org/operators-in-java/#Relational%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Logical%20Operators
https://www.geeksforgeeks.org/operators-in-java/#Ternary%20Operator
https://www.geeksforgeeks.org/operators-in-java/#Bitwise%20Operators
https://www.geeksforgeeks.org/operators-in-java/#instance%20of%20Operator

variable = value;
In many cases assignment operator can be combined with other operators to build
a shorter version of statement called Compound Statement. For example, instead
of a = a+5, we can write a += 5.

 +=, for adding left operand with right operand and then assigning it to variable
on the left.

 -=, for subtracting left operand with right operand and then assigning it to
variable on the left.

 *=, for multiplying left operand with right operand and then assigning it to
variable on the left.

 /=, for dividing left operand with right operand and then assigning it to
variable on the left.

 %=, for assigning modulo of left operand with right operand and then
assigning it to variable on the left.

int a = 5;

a += 5; //a = a+5;

Relational Operators : These operators are used to check for relations like
equality, greater than, less than. They return boolean result after the comparison
and are extensively used in looping statements as well as conditional if else
statements. General format is,
variable relation_operator value
Some of the relational operators are-

 ==, Equal to : returns true of left hand side is equal to right hand side.
 !=, Not Equal to : returns true of left hand side is not equal to right hand

side.
 <, less than : returns true of left hand side is less than right hand side.
 <=, less than or equal to : returns true of left hand side is less than or equal

to right hand side.
 >, Greater than : returns true of left hand side is greater than right hand

side.
 >=, Greater than or equal to: returns true of left hand side is greater than or

equal to right hand side.
Logical Operators : These operators are used to perform “logical AND” and “logical
OR” operation, i.e. the function similar to AND gate and OR gate in digital
electronics. One thing to keep in mind is the second condition is not evaluated if

the first one is false, i.e. it has a short-circuiting effect. Used extensively to test for
several conditions for making a decision.
Conditional operators are-
 &&, Logical AND : returns true when both conditions are true.
 ||, Logical OR : returns true if at least one condition is true.
 ! : Logical not operator, used for inverting a boolean value.

Ternary operator : Ternary operator is a shorthand version of if-else statement. It
has three operands and hence the name ternary. General format is-

 condition ? if true : if false
 The above statement means that if the condition evaluates to true, then

execute the statements after the ‘?’ else execute the statements after the ‘:’.

Bitwise Operators : These operators are used to perform manipulation of
individual bits of a number. They can be used with any of the integer types. They
are used when performing update and query operations of Binary indexed tree.
 &, Bitwise AND operator: returns bit by bit AND of input values.

 |, Bitwise OR operator: returns bit by bit OR of input values.
 ^, Bitwise XOR operator: returns bit by bit XOR of input values.
 ~, Bitwise Complement Operator: This is a unary operator which returns the

one’s compliment representation of the input value, i.e. with all bits inversed.
 << shift left
 >> shift right
 >>> shift right with zero fill

Instance of operator : Instance of operator is used for type checking. It can be
used to test if an object is an instance of a class, a subclass or an interface.
General format-

 object instance of class/subclass/interface

Expressions

Expressions are essential building blocks of any Java program, usually created to
produce a new value, although sometimes an expression assigns a value to a
variable. Expressions are built using values, variables, operators and method calls.

Decision Making,Branching and Looping

Decision Making in Java (if, if-else, switch, break, continue, jump)

Decision Making in programming is similar to decision making in real life. In
programming also we face some situations where we want a certain block of code to
be executed when some condition is fulfilled.
A programming language uses control statements to control the flow of execution of
program based on certain conditions. These are used to cause the flow of
execution to advance and branch based on changes to the state of a program.

Java’s Selection statements:
 if
 if-else
 nested-if
 if-else-if
 switch-case
 jump – break, continue, return

These statements allow you to control the flow of your program’s execution based
upon conditions known only during run time.

https://www.geeksforgeeks.org/java-instanceof-and-its-applications/
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if-else
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#nested-if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#if-else-if
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#switch-case
https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/#jump

Branching

Java provides three branching statements break, continue and return. The break
and continue in Java are two essential keyword beginners needs to familiar while
using loops (for loop, while loop and do while loop). break statement in java is used
to break the loop and transfers control to the line immediate outside of loop while
continue is used to escape current execution (iteration) and transfers control back
to the start of the loop. Both break and continue allow the programmer to create

sophisticated algorithm and looping constructs.

Looping

Java provides three repetition statements/looping statements that enable
programmers to control the flow of execution by repetitively performing a set of
statements as long as the continuation condition remains true. These three looping

statements are called for, while, and do...while statements.
The for and while statements perform the repetition declared in their body zero or
more times. If the loop continuation condition is false, it stops execution.
The do...while loop is slightly different in the sense that it executes the statements
within its body for one or more times.

There is a common structure of all types of loops, such as:

 There is a control variable, called the loop counter.
 The control variable must be initialized; in other words, it must have an

initial value.
 The increment/decrement of the control variable, which is modified each

time the iteration of the loop occurs.
 The loop condition that determines if the looping should continue or the

program should break from it.

Unit II

 CLASSES AND ARRAYS

Defining a Class
A class is a user defined blueprint or prototype from which objects are created. It
represents the set of properties or methods that are common to all objects of one
type. In general, class declarations can include these components, in order:

1. Modifiers : A class can be public or has default access (Refer this for details).
2. Class name: The name should begin with a initial letter (capitalized by

convention).
3. Superclass(if any): The name of the class’s parent (superclass), if any,

preceded by the keyword extends. A class can only extend (subclass) one
parent.

4. Interfaces(if any): A comma-separated list of interfaces implemented by the
class, if any, preceded by the keyword implements. A class can implement

more than one interface.
5. Body: The class body surrounded by braces, { }.

Constructors are used for initializing new objects. Fields are variables that provides
the state of the class and its objects, and methods are used to implement the
behavior of the class and its objects.

There are various types of classes that are used in real time applications such
as nested classes, anonymous classes, lambda expressions.

Constructots

Constructors are used to initialize the object’s state. Like methods, a constructor
also contains collection of statements(i.e. instructions) that are executed at time
of Object creation.

Need of Constructor

Think of a Box. If we talk about a box class then it will have some class variables

(say length, breadth, and height). But when it comes to creating its object(i.e Box
will now exist in computer’s memory), then can a box be there with no value
defined for its dimensions. The answer is no.
So constructors are used to assign values to the class variables at the time of object
creation, either explicitly done by the programmer or by Java itself (default
constructor).

 Constructor called

Each time an object is created using new() keyword at least one constructor (it
could be default constructor) is invoked to assign initial values to the data
members of the same class.

Methods

A method is a collection of statements that perform some specific task and return
the result to the caller. A method can perform some specific task without returning
anything. Methods allow us to reuse the code without retyping the code. In Java,

https://www.geeksforgeeks.org/access-specifiers-for-classes-or-interfaces-in-java/
https://www.geeksforgeeks.org/inner-class-java/
https://www.geeksforgeeks.org/anonymous-inner-class-java/
https://www.geeksforgeeks.org/lambda-expressions-java-8/
https://www.geeksforgeeks.org/methods-in-java/

every method must be part of some class which is different from languages like C,
C++, and Python.

Methods are time savers and help us to reuse the code without retyping the code.

Method Declaration
In general, method declarations has six components :

 Modifier-: Defines access type of the method i.e. from where it can be
accessed in your application. In Java, there 4 type of the access specifiers.
 public: accessible in all class in your application.
 protected: accessible within the class in which it is defined and in

its subclass(es)
 private: accessible only within the class in which it is defined.
 default (declared/defined without using any modifier) : accessible within

same class and package within which its class is defined.
 The return type : The data type of the value returned by the method or void if

does not return a value.

 Method Name : the rules for field names apply to method names as well, but
the convention is a little different.

 Parameter list : Comma separated list of the input parameters are defined,
preceded with their data type, within the enclosed parenthesis. If there are no
parameters, you must use empty parentheses ().

 Exception list : The exceptions you expect by the method can throw, you can
specify these exception(s).

 Method body : it is enclosed between braces. The code you need to be
executed to perform your intended operations.

Overloading

Overloading allows different methods to have the same name, but different
signatures where the signature can differ by the number of input parameters or

type of input parameters or both. Overloading is related to compile-time (or static)
polymorphism.

Static Members

To create a static member(block,variable,method,nested class), precede its

declaration with the keyword static. When a member is declared static, it can be

accessed before any objects of its class are created, and without reference to any

object. For example, in below java program, we are accessing static

method m1() without creating any object of Test class.

Nesting of Methods

 When a method in java calls another method in the same class, it is called Nesting
of methods.

Example:

Enter length, breadth and height as input. After that we first call the volume

method. From volume method we call area method and from area method we call

perimeter method. Hence we get perimeter, area and volume of cuboid as output.

Overriding Method

In any object-oriented programming language, Overriding is a feature that allows a
subclass or child class to provide a specific implementation of a method that is
already provided by one of its super-classes or parent classes. When a method in a
subclass has the same name, same parameters or signature and same return
type(or sub-type) as a method in its super-class, then the method in the subclass is
said to override the method in the super-class.

Method overriding is one of the way by which java achieve Run Time
Polymorphism.The version of a method that is executed will be determined by the
object that is used to invoke it. If an object of a parent class is used to invoke the
method, then the version in the parent class will be executed, but if an object of the
subclass is used to invoke the method, then the version in the child class will be
executed. In other words, it is the type of the object being referred to (not the type of
the reference variable) that determines which version of an overridden method will
be executed.

Final Classes

A final class is a class that can't be extended. Also methods could be declared as final to

indicate that cannot be overridden by subclasses. Preventing the class from being

subclassed could be particularly useful if you write APIs or libraries and want to avoid being

extended to alter base behaviour.

Abstract Classes

In C++, if a class has at least one pure virtual function, then the class
becomes abstract. Unlike C++, in Java, a separate keyword abstract is used to
make a class abstract.

// An example abstract class in Java
abstract class Shape {
 int color;

 // An abstract function (like a pure virtual function in C++)
 abstract void draw();
}

https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/
https://www.geeksforgeeks.org/dynamic-method-dispatch-runtime-polymorphism-java/

Visibility Control

Java access modifiers are known as Visibility Control in Java. Modifiers are used to
define where members, function and class can be used and where these can’t be

accessed .

Java supports 13 modifiers. These can be divided into 3 groups.
Accessibility modifiers
1. private
2. default
3. protected
4. public
Execution level modifiers
5. static
6. final
7. abstract
8. native

9. transient
10. volatile
11. synchronized
12. strictfp
File level modifiers
13. interface

Arrays

An array is a group of like-typed variables that are referred to by a common
name.Arrays in Java work differently than they do in C/C++. Following are some
important point about Java arrays.

 In Java all arrays are dynamically allocated.(discussed below)
 Since arrays are objects in Java, we can find their length using member

length. This is different from C/C++ where we find length using sizeof.
 A Java array variable can also be declared like other variables with [] after the

data type.
 The variables in the array are ordered and each have an index beginning from

0.

 Java array can be also be used as a static field, a local variable or a method
parameter.

 The size of an array must be specified by an int value and not long or short.
 The direct superclass of an array type is Object.
 Every array type implements the interfaces Cloneable and java.io.Serializable.

Array can contains primitives data types as well as objects of a class depending on
the definition of array. In case of primitives data types, the actual values are stored
in contiguous memory locations. In case of objects of a class, the actual objects are
stored in heap segment.

https://www.geeksforgeeks.org/object-class-in-java/
https://www.geeksforgeeks.org/marker-interface-java/
https://www.geeksforgeeks.org/serialization-in-java/
https://www.geeksforgeeks.org/g-fact-46/
https://www.geeksforgeeks.org/g-fact-46/

Creating an Array

One-Dimensional Arrays :

The general form of a one-dimensional array declaration is
type var-name[];

OR

type[] var-name;

An array declaration has two components: the type and the name. type declares
the element type of the array. The element type determines the data type of each
element that comprises the array. Like array of int type, we can also create an
array of other primitive data types like char, float, double..etc or user defined data
type(objects of a class).Thus, the element type for the array determines what type of
data the array will hold.

Two Dimensional Arrays

The Two Dimensional Array in Java programming language is nothing but an Array
of Arrays. In Java Two Dimensional Array, data stored in row and columns, and we
can access the record using both the row index and column index

If the data is linear, we can use the One Dimensional Array. However, to work with
multi-level data, we have to use the Multi-Dimensional Array. Two Dimensional
Array in Java is the simplest form of Multi-Dimensional Array.

Two Dimensional Array Declaration

The following code snippet shows the two dimensional array declaration in Java
Programming Language:

Data_Type[][] Array_Name;

 Data_type: It decides the type of elements it will accept. For example, If we
want to store integer values, then the Data Type will be declared as int. If we
want to store Float values, then the Data Type will be float.

https://www.tutorialgateway.org/java-array/
https://www.tutorialgateway.org/multi-dimensional-array-in-java/
https://www.tutorialgateway.org/java-tutorial/
https://www.tutorialgateway.org/java-tutorial/
https://media.geeksforgeeks.org/wp-content/uploads/Arrays1.png

 Array_Name: This is the name to give it to this Java two dimensional array.
For example, Car, students, age, marks, department, employees, etc.

Strings

Strings in Java are Objects that are backed internally by a char array. Since arrays
are immutable(cannot grow), Strings are immutable as well. Whenever a change to
a String is made, an entirely new String is created.

Below is the basic syntax for declaring a string in Java programming language.

Syntax:
<String_Type> <string_variable> = “<sequence_of_string>”;

Example:

String str = "India";

String Arrays

A Java String Array is an object that holds a fixed number of String values. Arrays

in general is a very useful and important data structure that can help solve many

types of problems. It's simplicity on how to access contents through index makes it

powerful yet user-friendly. Here are some examples on how to use String Array in

Java.

String Array Declaration

Square brackets is used to declare a String array. There are two ways of using it.

The first one is to put square brackets after the String reserved word. For example:

String[] thisIsAStringArray;

Another way of declaring a String Array is to put the square brackers after the

name of the variable. For example:

String thisIsAStringArray[];

Both statements will declare the variable "thisIsAStringArray" to be a String Array.

Note that this is just a declaration, the variable "thisIsAStringArray" will have the

value null. And since there is only one square brackets, this means that the

variable is only a one-dimensional String Array. Examples will be shown later on

how to declare multi-dimensional String Arrays.

String is a sequence of characters, for e.g. “Hello” is a string of 5 characters. In
java, string is an immutable object which means it is constant and can cannot be

changed once it has been created. In this tutorial we will learn about String class
and String methods in detail along with many other Java String tutorials.

Creating a String

There are two ways to create a String in Java

1. String literal
2. Using new keyword

String literal

In java, Strings can be created like this: Assigning a String literal to a String
instance:

String str1 = "Welcome";
String str2 = "Welcome";
The problem with this approach: As I stated in the beginning that String is an
object in Java. However we have not created any string object using new keyword
above. The compiler does that task for us it creates a string object having the string
literal (that we have provided , in this case it is “Welcome”) and assigns it to the
provided string instances.

But if the object already exist in the memory it does not create a new Object rather
it assigns the same old object to the new instance, that means even though we
have two string instances above(str1 and str2) compiler only created on string
object (having the value “Welcome”) and assigned the same to both the instances.
For example there are 10 string instances that have same value, it means that in
memory there is only one object having the value and all the 10 string instances
would be pointing to the same object.

What if we want to have two different object with the same string? For that we
would need to create strings using new keyword.

Using New Keyword

As we saw above that when we tried to assign the same string object to two
different literals, compiler only created one object and made both of the literals to
point the same object. To overcome that approach we can create strings like this:

String str1 = new String("Welcome");
String str2 = new String("Welcome");
In this case compiler would create two different object in memory having the same
string.

String Methods

Here are the list of the methods available in the Java String class. These methods
are explained in the separate tutorials with the help of examples. Links to the

tutorials are provided below:

1. char charAt(int index): It returns the character at the specified index.
Specified index value should be between 0 to length() -1 both inclusive. It
throws IndexOutOfBoundsException if index<0||>= length of String.

2. boolean equals(Object obj): Compares the string with the specified string and
returns true if both matches else false.

3. boolean equalsIgnoreCase(String string): It works same as equals method but
it doesn’t consider the case while comparing strings. It does a case insensitive
comparison.

4. int compareTo(String string): This method compares the two strings based on
the Unicode value of each character in the strings.

5. int compareToIgnoreCase(String string): Same as CompareTo method however
it ignores the case during comparison.

6. boolean startsWith(String prefix, int offset): It checks whether the substring
(starting from the specified offset index) is having the specified prefix or not.

7. boolean startsWith(String prefix): It tests whether the string is having
specified prefix, if yes then it returns true else false.

8. boolean endsWith(String suffix): Checks whether the string ends with the
specified suffix.

9. int hashCode(): It returns the hash code of the string.

StringBuffer class

StringBuffer is a peer class of String that provides much of the functionality of
strings. String represents fixed-length, immutable character sequences while
StringBuffer represents growable and writable character sequences.
StringBuffer may have characters and substrings inserted in the middle or
appended to the end. It will automatically grow to make room for such additions
and often has more characters preallocated than are actually needed, to allow room
for growth.
StringBuffer Constructors

StringBuffer(): It reserves room for 16 characters without reallocation.
StringBuffer s=new StringBuffer();
StringBuffer(int size)It accepts an integer argument that explicitly sets the size of
the buffer.
StringBuffer s=new StringBuffer(20);
StringBuffer(String str): It accepts a String argument that sets the initial contents
of the StringBuffer object and reserves room for 16 more characters without
reallocation.
StringBuffer s=new StringBuffer("GeeksforGeeks");
Methods
Some of the most used methods are:

 length() and capacity(): The length of a StringBuffer can be found by the

length() method, while the total allocated capacity can be found by the
capacity() method.

https://beginnersbook.com/2013/12/java-string-charat-method-example/
https://beginnersbook.com/2013/12/java-string-equals-and-equalsignorecase-methods-example/
https://beginnersbook.com/2013/12/java-string-equals-and-equalsignorecase-methods-example/
https://beginnersbook.com/2013/12/java-string-compareto-method-example/
https://beginnersbook.com/2013/12/java-string-comparetoignorecase-method-example/
https://beginnersbook.com/2013/12/java-string-startswith-method-example/
https://beginnersbook.com/2013/12/java-string-startswith-method-example/
https://beginnersbook.com/2013/12/java-string-endswith-method-example/
https://beginnersbook.com/2013/12/java-string-trim-and-hashcode-methods/

Vectors

The vector class implements a growable array of objects. Like an array, it contains

the component that can be accessed using an integer index. Vector is very useful if

we don't know the size of an array in advance or we need one that can change the

size over the lifetime of a program.

Wrapper classes

A Wrapper class is a class whose object wraps or contains a primitive data types.

When we create an object to a wrapper class, it contains a field and in this field,

we can store a primitive data types. In other words, we can wrap a primitive value

into a wrapper class object.

Need of Wrapper Classes
1. They convert primitive data types into objects. Objects are needed if we wish

to modify the arguments passed into a method (because primitive types are
passed by value).

2. The classes in java.util package handles only objects and hence wrapper
classes help in this case also.

3. Data structures in the Collection framework, such as ArrayList and Vector,
store only objects (reference types) and not primitive types.

4. An object is needed to support synchronization in multithreading.

Primitive Data types and their Corresponding Wrapper class

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

Unit III

INHERITANCE,INTERFACES AND PACKAGES

Defining a subclass

A class that is derived from another class is called a subclass (also a derived class,

extended class, or child class). The class from which the subclass is derived is

called a superclass (also a base class or a parent class).

A subclass is defined as follows

class subclassname extnds superclassname

{

variables declaration;

method declaration;

The keyword extends signifies that the properties of the superclassname are

extended to the subclassname.

Subclass Constructor

A subclass constructor is used to construct the instance variables of both the

subclass and the superclass. The subclass constructor uses the keyword super to

invoke the constructor method of the superclass. The keyword super is used

subject to the following condition

1. super may only be used within a subclass constructor method.

2. The call to superclass constructor must appear as the first statement

within the subclass constructor.

3. The parameters in the super call must match the order and type of the

instance variable declared in the superclass.

Multilevel Inheritance

In Java (and in other object-oriented languages) a class can get features from
another class. This mechanism is known as inheritance.
 When multiple classes are involved and their parent-child relation is formed in a

chained way then such formation is known as multi-level inheritance.
 In multilevel inheritance, a parent a class has a maximum of one direct child

class only.
 In multi-level inheritance, the inheritance linkage is formed in a linear way and

minimum 3 classes are involved.
Code re-usability can be extended with multi-level inheritance.

Hierarchical Inheritance

Hierarchical Inheritance in Java is one of the types of inheritance in java.

Inheritance is one of the important features of an Object-Oriented programming

system (oops). An inheritance is a mechanism in which one class inherits or

acquires all the attributes and behaviors of the other class. The class from which

inherits the attributes and behaviors are called parent or super or base class and

the class which inherits the attributes and behaviors are called child or derived

class. In Hierarchical Inheritance, the multiple child classes inherit the single class

or the single class is inherited by multiple child class. The use of inheritance in

Java is for the reusability of code and for the dynamic polymorphism (method

overriding). We can understand the Hierarchical Inheritance more clearly with the

help of the below diagram.

https://www.educba.com/inheritance-in-java/
https://www.educba.com/hierarchical-inheritance-in-c-plus-plus/

As in the above example figure, the ClassB and ClassC inherit the same or single

class ClassA. So the ClassA variables and methods are reuse in both classes,

ClassB and ClassC. As the above diagram showing that more than one child

classes have the same parent class, so this type of inheritance is called

Hierarchical Inheritance.

Defining Interface

An interface is a reference type in Java. It is similar to class. It is a collection of
abstract methods. A class implements an interface, thereby inheriting the abstract
methods of the interface.

Along with abstract methods, an interface may also contain constants, default
methods, static methods, and nested types. Method bodies exist only for default
methods and static methods.

Writing an interface is similar to writing a class. But a class describes the
attributes and behaviors of an object. And an interface contains behaviors that a
class implements.

Unless the class that implements the interface is abstract, all the methods of the
interface need to be defined in the class.

An interface is similar to a class in the following ways −

 An interface can contain any number of methods.

 An interface is written in a file with a .java extension, with the name of the
interface matching the name of the file.

 The byte code of an interface appears in a .class file.

 Interfaces appear in packages, and their corresponding bytecode file must
be in a directory structure that matches the package name.

However, an interface is different from a class in several ways, including −

 You cannot instantiate an interface.

 An interface does not contain any constructors.

 All of the methods in an interface are abstract.

 An interface cannot contain instance fields. The only fields that can appear
in an interface must be declared both static and final.

 An interface is not extended by a class; it is implemented by a class.

 An interface can extend multiple interfaces.

Declaring Interfaces

The interface keyword is used to declare an interface. Here is a simple example to
declare an interface

Extending Interfaces

An interface can extend another interface in the same way that a class
can extend another class. The extends keyword is used to extend an interface,
and the child interface inherits the methods of the parent interface. The

following Sports interface is extended by Hockey and Football interfaces.

Implementing Interfaces

An interface is just like Java Class, but it only has static constants and abstract
method. Java uses Interface to implement multiple inheritance. A Java class can
implement multiple Java Interfaces. All methods in an interface are implicitly
public and abstract.

Syntax for Declaring Interface

interface {

//methods

}

To use an interface in your class, append the keyword "implements" after your
class name followed by the interface name.

Example for Implementing Interface

class Dog implements Pet

interface RidableAnimal extends Animal, Vehicle

Java Application Programming Interface (API) Packages

Java API provides a large number of classes grouped into different packages

according to functionality. Most of the time we use the packages available with the

Java API.

Java application programming interface (API) is a list of all classes that are part of

the Java development kit (JDK). It includes all Java packages, classes, and

interfaces, along with their methods, fields, and constructors. These prewritten

classes provide a tremendous amount of functionality to a programmer. A

programmer should be aware of these classes and should know how to use them. A

complete listing of all classes in Java API can be found at Oracle’s website:

http://docs.oracle.com/javase/7/docs/api/. Please visit the above site and

bookmark it for future reference. Please consult this site often, especially when you

are using a new class and would like to know more about its methods and fields. If

you browse through the list of packages in the API, you will observe that there are

packages written for GUI programming, networking programming, managing input

and output, database programming, and many more. Please browse the complete

list of packages and their descriptions to see how they can be used. In order to use

a class from Java API, one needs to include an import statement at the start of the

program. For example, in order to use the Scanner class, which allows a program

to accept input from the keyboard, one must include the following import

statement: import java.util.Scanner; The above import statement allows the

programmer to use any method listed in the Scanner class. Another choice for

including the import statement is the wildcard option shown below: import

java.util.*; This version of the import statement imports all the classes in the API’s

java.util package and makes them available to the programmer. If you check the

API and look at the classes written in the java.util package, you will observe that it

includes some of the classes that are used often, such as Arrays, ArrayList,

Formatter, Random, and many others. Another Java package that has several

commonly used classes is the java.lang package. This package includes classes

that are fundamental to the design of Java language. The java.lang package is

automatically imported in a Java program and does not need an explicit import

statement. Please note that some of the classes that we use very early in Java

programming come from this package. Commonly used classes in the java.lang

package are: Double, Float, Integer, String, StringBuffer, System, and Math.

Creating a Package

Packages are used in Java in order to prevent naming conflicts, to control access,
to make searching/locating and usage of classes, interfaces, enumerations and
annotations easier, etc.

A Package can be defined as a grouping of related types (classes, interfaces,
enumerations and annotations) providing access protection and namespace
management.

Some of the existing packages in Java are −

 java.lang − bundles the fundamental classes

 java.io − classes for input , output functions are bundled in this package

Programmers can define their own packages to bundle group of classes/interfaces,
etc. It is a good practice to group related classes implemented by you so that a
programmer can easily determine that the classes, interfaces, enumerations, and
annotations are related.

Since the package creates a new namespace there won't be any name conflicts

with names in other packages. Using packages, it is easier to provide access
control and it is also easier to locate the related classes.

While creating a package, you should choose a name for the package and include
a package statement along with that name at the top of every source file that
contains the classes, interfaces, enumerations, and annotation types that you
want to include in the package.

The package statement should be the first line in the source file. There can be only
one package statement in each source file, and it applies to all types in the file.

If a package statement is not used then the class, interfaces, enumerations, and
annotation types will be placed in the current default package.

To compile the Java programs with package statements, you have to use -d option
as shown below.

javac -d Destination_folder file_name.java

Then a folder with the given package name is created in the specified destination,
and the compiled class files will be placed in that folder.

Example

Let us look at an example that creates a package called animals. It is a good
practice to use names of packages with lower case letters to avoid any conflicts
with the names of classes and interfaces.

Following package example contains interface named animals −

/* File name : Animal.java */
package animals;

interface Animal {
 public void eat();
 public void travel();
}

Creating a package in Java is a very easy task. Choose a name for
the package and include a package command as the first statement in

the Java source file. The java source file can contain the classes, interfaces,
enumerations, and annotation types that you want to include in the package.

using packages

Packages are used in Java in order to prevent naming conflicts, to control access,
to make searching/locating and usage of classes, interfaces, enumerations and
annotations easier, etc.

Accessing a Package

A java system package can be accessed ether using a fully qualified class name or

using a shortcut approach the import statement. we use the import statement

when there are many references to a particular package or the package name is too

long and wieldy.

The same approaches can be used to access the user-defined packages as well. The

import statement can be used to search a list of packages for a particular class.

Syntax,

import package1 [.packag2] [.package3].classname;

Here package1 is the name of the top level package, package2 is the name of the

package that is inside the package1 and so on. we can have any number of

packages in a package hierarchy. finally the explicit classname is specified.

Adding Classes to Packages

1. Put the Java source file inside a directory matching the Java package you want to
put the class in.

2. Declare that class as part of the package.

Hiding Classes

When we import a package within a program, only the classes declared as public in
that package will be made accessible within this program. In other words, the
classes not declared as public in that package will not be accessible within this
program.
We shall profitably make use of the above fact. Sometimes, we may wish that
certain classes in a package should not be made accessible to the importing
program. In such cases, we need not declare those classes as public. When we do
so, those classes will be hidden from being accessed by the importing class.

UNIT IV : MULTITHREADING, EXCEPTION HANDLING, FILES AND CREATING

THREADS

Extending Thread Class:

 One way to create a thread is to create a new class that extends Thread, and

then to create an instance of that class. The extending class must override the

run() method, which is the entry point for the new thread. It must also call start()

to begin execution of the new thread.

Example:

class ExtendingThread extends Thread
 {
 String s[]={"Welcome","to","Java","Programming","Language"};
 public static void main(String args[])
 {
 ExtendingThread t=new ExtendingThread("Extending Thread
Class");
 }
 public ExtendingThread (String n)
 {
 super(n);
 start();
 }
 public void run()
 {
 String name=getName();
 for(int i=0;i<s.length;i++)
 {
 try
 {
 sleep(500);
 }
 catch(Exception e)
 {
 }
 System.out.println(name+":"+s[i]);
 }
 }
 }

Thread Life Cycle:

Java is a multi-threaded programming language which means we can develop
multi-threaded program using Java. A multi-threaded program contains two or
more parts that can run concurrently and each part can handle a different task at
the same time making optimal use of the available resources specially when your

computer has multiple CPUs.

By definition, multitasking is when multiple processes share common processing
resources such as a CPU. Multi-threading extends the idea of multitasking into
applications where you can subdivide specific operations within a single

http://ecomputernotes.com/java/multithreading/extending-thread-class
http://ecomputernotes.com/java/multithreading/extending-thread-class

application into individual threads. Each of the threads can run in parallel. The
OS divides processing time not only among different applications, but also among
each thread within an application.

Multi-threading enables you to write in a way where multiple activities can
proceed concurrently in the same program.

A thread goes through various stages in its life cycle. For example, a thread is
born, started, runs, and then dies. The following diagram shows the complete life
cycle of a thread.

Following are the stages of the life cycle −

 New − A new thread begins its life cycle in the new state. It remains in this
state until the program starts the thread. It is also referred to as a born
thread.

 Runnable − After a newly born thread is started, the thread becomes
runnable. A thread in this state is considered to be executing its task.

 Waiting − Sometimes, a thread transitions to the waiting state while the
thread waits for another thread to perform a task. A thread transitions back
to the runnable state only when another thread signals the waiting thread
to continue executing.

 Timed Waiting − A runnable thread can enter the timed waiting state for a
specified interval of time. A thread in this state transitions back to the
runnable state when that time interval expires or when the event it is
waiting for occurs.

 Terminated (Dead) − A runnable thread enters the terminated state when it
completes its task or otherwise terminates.

Thread Exception

Thread is the independent path of execution run inside the program. Many Thread
run concurrently in the program. Multithread are those group of more than one
thread that runs concurrently in a program. Thread in a program is imported
from java.lang.thread class.InMultithread,the thread run concurently,synchronous
or asynchronous.

Advantage of Multithread

1)Multithread are lightweight as compared to any processes.

2)Context Switching between the thread is less expensive as compared to
processes.

3)Intercommunication between thread is relatively economically than processes.

4)Multithread occupy the same address and data space.

5)Thread can run independently in program.

Method in Object and Thread Class

Object Thread

1)Notify() 1)Sleep()

2)Notify all() 2)Yield()

3)wait()

How to Create Thread

There are method to create thread

1)Extends the Threads Class(java.lang.thread)

2)Implement Runnable interface(java .lang. thread)

Understand Exception in Threads.

1.A class name RunnableThread implements the Runnable interface gives you the
run() method executed by the thread. Object of this class is runnable

2. The Thread constructor is used to create an object of RunnableThread class by
passing runnable object as parameter.. The Thread object has a Runnable object
that implements the run() method.

3. The start() method is invoked on the Thread object . The start() method returns
immediately once a thread has been spawned.

4. The thread ends when the run() method ends which is to be normal termination
or caught exception.

 5.runner = new Thread(this,threadName) is used to create a new thread

6 .runner. start() is used to start the new thread.

7.public void run() is overrideable method used to display the information of
particular thread

8.Thread.currentThread().sleep(2000) is used to deactivate the thread untill the
next thread started execution or used to delay the current thread.

Thread Priority

Every Java thread has a priority that helps the operating system determine the
order in which threads are scheduled.

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1)
and MAX_PRIORITY (a constant of 10). By default, every thread is given priority
NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should be
allocated processor time before lower-priority threads. However, thread priorities
cannot guarantee the order in which threads execute and are very much platform
dependent.

Synchronization

Multi-threaded programs may often come to a situation where multiple threads try
to access the same resources and finally produce erroneous and unforeseen
results.
So it needs to be made sure by some synchronization method that only one thread
can access the resource at a given point of time.

Java provides a way of creating threads and synchronizing their task by using
synchronized blocks. Synchronized blocks in Java are marked with the
synchronized keyword. A synchronized block in Java is synchronized on some
object. All synchronized blocks synchronized on the same object can only have one
thread executing inside them at a time. All other threads attempting to enter the
synchronized block are blocked until the thread inside the synchronized block exits
the block.

Following is the general form of a synchronized block:

// Only one thread can execute at a time.

// sync_object is a reference to an object

// whose lock associates with the monitor.
// The code is said to be synchronized on
// the monitor object
synchronized(sync_object)
{
 // Access shared variables and other
 // shared resources
}

Runnable interface

java.lang.Runnable is an interface that is to be implemented by a class whose
instances are intended to be executed by a thread. There are two ways to start a
new Thread – Subclass Thread and implement Runnable. There is no need of

http://quiz.geeksforgeeks.org/multithreading-in-java/
http://quiz.geeksforgeeks.org/monitors/

subclassing Thread when a task can be done by overriding only run() method
of Runnable.
Steps to create a new Thread using Runnable :

1. Create a Runnable implementer and implement run() method.

2. Instantiate Thread class and pass the implementer to the Thread, Thread has a
constructor which accepts Runnable instance.

3. Invoke start() of Thread instance, start internally calls run() of the implementer.
Invoking start(), creates a new Thread which executes the code written in run().
Calling run() directly doesn’t create and start a new Thread, it will run in the same
thread. To start a new line of execution, call start() on the thread.

Example,
public class RunnableDemo {

 public static void main(String[] args)
 {
 System.out.println("Main thread is- "
 + Thread.currentThread().getName());
 Thread t1 = new Thread(new RunnableDemo().new RunnableImpl());
 t1.start();
 }

 private class RunnableImpl implements Runnable {

 public void run()
 {
 System.out.println(Thread.currentThread().getName()
 + ", executing run() method!");
 }
 }
}
Output:

Main thread is- main

Thread-0, executing run() method!

Output shows two active threads in the program – main thread and Thread-0, main
method is executed by the Main thread but invoking start on RunnableImpl creates
and starts a new thread – Thread-0.

Create a Thread by Implementing a Runnable Interface

If your class is intended to be executed as a thread then you can achieve this by
implementing a Runnable interface. You will need to follow three basic steps −

Step 1

As a first step, you need to implement a run() method provided by
a Runnable interface. This method provides an entry point for the thread and you
will put your complete business logic inside this method. Following is a simple
syntax of the run() method −

public void run()

Step 2

As a second step, you will instantiate a Thread object using the following
constructor −

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements
the Runnable interface and threadName is the name given to the new thread.

Step 3

Once a Thread object is created, you can start it by calling start() method, which
executes a call to run() method. Following is a simple syntax of start() method −

void start();
This synchronization is implemented in Java with a concept called monitors. Only

one thread can own a monitor at a given time. When a thread acquires a lock, it is

said to have entered the monitor. All other threads attempting to enter the locked

monitor will be suspended until the first thread exits the monitor

Exceptions

An exception (or exceptional event) is a problem that arises during the execution of
a program. When an Exception occurs the normal flow of the program is
disrupted and the program/Application terminates abnormally, which is not

recommended, therefore, these exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios
where an exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the
JVM has run out of memory.

Some of these exceptions are caused by user error, others by programmer error,
and others by physical resources that have failed in some manner.

Based on these, we have three categories of Exceptions. You need to understand

them to know how exception handling works in Java.

 Checked exceptions − A checked exception is an exception that is checked
(notified) by the compiler at compilation-time, these are also called as

compile time exceptions. These exceptions cannot simply be ignored, the
programmer should take care of (handle) these exceptions.

For example, if you use FileReader class in your program to read data from a file,

if the file specified in its constructor doesn't exist, then
a FileNotFoundException occurs, and the compiler prompts the programmer to
handle the exception.

Example

import java.io.File;
import java.io.FileReader;

public class FilenotFound_Demo {

 public static void main(String args[]) {
 File file = new File("E://file.txt");
 FileReader fr = new FileReader(file);

 }
}

If you try to compile the above program, you will get the following exceptions.

Output

C:\>javac FilenotFound_Demo.java
FilenotFound_Demo.java:8: error: unreported exception FileNotFoundException;
must be caught or declared to be thrown
 FileReader fr = new FileReader(file);
 ^
1 error

Note − Since the methods read() and close() of FileReader class throws
IOException, you can observe that the compiler notifies to handle IOException,
along with FileNotFoundException.

 Unchecked exceptions − An unchecked exception is an exception that
occurs at the time of execution. These are also called as Runtime
Exceptions. These include programming bugs, such as logic errors or
improper use of an API. Runtime exceptions are ignored at the time of

compilation.

For example, if you have declared an array of size 5 in your program, and trying to
call the 6th element of the array then
an ArrayIndexOutOfBoundsExceptionexception occurs.

Example

public class Unchecked_Demo {

 public static void main(String args[]) {
 int num[] = {1, 2, 3, 4};
 System.out.println(num[5]);
 }

}

If you compile and execute the above program, you will get the following exception.

Output

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
 at Exceptions.Unchecked_Demo.main(Unchecked_Demo.java:8)

 Errors − These are not exceptions at all, but problems that arise beyond the
control of the user or the programmer. Errors are typically ignored in your
code because you can rarely do anything about an error. For example, if a
stack overflow occurs, an error will arise. They are also ignored at the time
of compilation.

Throwing own exceptions

 All exceptions must be a child of Throwable.

 If you want to write a checked exception that is automatically enforced by
the Handle or Declare Rule, you need to extend the Exception class.

 If you want to write a runtime exception, you need to extend the
RuntimeException class.

class MyException extends Exception {

}

You just need to extend the predefined Exception class to create your own
Exception.

Example

Following is an exception which is thrown if the value passed is greater than 10.

class MyException extends Exception {

 int id;

 public MyException(int x) {

 id = x;

 }

 public String toString() {

 return "CustomException[" + id + "]";

 }

}

public class Sampleee {

 static void compute(int a) throws MyException {

 if (a > 10)

 throw new MyException(a);

 System.out.println("No error in prog. no exception caught");

 }

 public static void main(String args[]) {

 try {

 compute(5);

 compute(12);

 } catch(MyException ex1) {

 System.out.println(ex1);

 }

 }

}

Output

No error in prog. no exception caught

CustomException[12]

Concept of Stream

A stream can be defined as a sequence of data. There are two kinds of Streams −

 InPutStream − The InputStream is used to read data from a source.

 OutPutStream − The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks but
this tutorial covers very basic functionality related to streams and I/O. We will see
the most commonly used examples one by one −

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though
there are many classes related to byte streams but the most frequently used
classes are, FileInputStream and FileOutputStream. Following is an example
which makes use of these two classes to copy an input file into an output file −

Example

import java.io.*;
public class CopyFile {

 public static void main(String args[]) throws IOException {
 FileInputStream in = null;
 FileOutputStream out = null;

 try {
 in = new FileInputStream("input.txt");
 out = new FileOutputStream("output.txt");

 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 }
 }finally {
 if (in != null) {

 in.close();
 }
 if (out != null) {
 out.close();
 }
 }
 }
}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in
creating output.txt file with the same content as we have in input.txt. So let's put
the above code in CopyFile.java file and do the following −

$javac CopyFile.java
$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas
Java Character streams are used to perform input and output for 16-bit unicode.
Though there are many classes related to character streams but the most
frequently used classes are, FileReader and FileWriter. Though internally
FileReader uses FileInputStream and FileWriter uses FileOutputStream but here
the major difference is that FileReader reads two bytes at a time and FileWriter
writes two bytes at a time.

We can re-write the above example, which makes the use of these two classes to
copy an input file (having unicode characters) into an output file −

Example

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException {
 FileReader in = null;

 FileWriter out = null;

 try {

 in = new FileReader("input.txt");
 out = new FileWriter("output.txt");

 int c;
 while ((c = in.read()) != -1) {
 out.write(c);
 }
 }finally {
 if (in != null) {
 in.close();
 }
 if (out != null) {
 out.close();
 }

 }
 }
}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in
creating output.txt file with the same content as we have in input.txt. So let's put
the above code in CopyFile.java file and do the following −

$javac CopyFile.java
$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where the user's
program can take input from a keyboard and then produce an output on the
computer screen. If you are aware of C or C++ programming languages, then you
must be aware of three standard devices STDIN, STDOUT and STDERR. Similarly,

Java provides the following three standard streams −

 Standard Input − This is used to feed the data to user's program and
usually a keyboard is used as standard input stream and represented
as System.in.

 Standard Output − This is used to output the data produced by the user's
program and usually a computer screen is used for standard output stream
and represented as System.out.

 Standard Error − This is used to output the error data produced by the
user's program and usually a computer screen is used for standard error
stream and represented as System.err.

Stream Classess

Java.io.InputStream Class in Java

InputStream class is the superclass of all the io classes i.e. representing an input
stream of bytes. It represents input stream of bytes. Applications that are defining
subclass of InputStream must provide method, returning the next byte of input.
A reset() method is invoked which re-positions the stream to the recently marked
position.

Declaration :
public abstract class InputStream

 extends Object

 implements Closeable

Constructor :
 InputStream() : Single Constructor

https://media.geeksforgeeks.org/wp-content/uploads/InputStream.jpg

Methods:

https://media.geeksforgeeks.org/wp-content/uploads/InputStream-Class-in-Java..jpg

Byte Stream Classes

These handle data in bytes (8 bits) i.e., the byte stream classes read/write data of 8
bits. Using these you can store characters, videos, audios, images etc.

The InputStream and OutputStream classes (abstract) are the super classes of all
the input/output stream classes: classes that are used to read/write a stream of
bytes. Following are the byte array stream classes provided by Java −

InputStream OutputStream

FIleInputStream FileOutputStream

ByteArrayInputStream ByteArrayOutputStream

ObjectInputStream ObjectOutputStream

PipedInputStream PipedOutputStream

FilteredInputStream FilteredOutputStream

BufferedInputStream BufferedOutputStream

DataInputStream DataOutputStream

Character Streams Classes

These handle data in 16 bit Unicode. Using these you can read and write text data
only.

The Reader and Writer classes (abstract) are the super classes of all the character
stream classes: classes that are used to read/write character streams. Following
are the character array stream classes provided by Java −

Reader Writer

BufferedReader BufferedWriter

CharacterArrayReader CharacterArrayWriter

StringReader StringWriter

FileReader FileWriter

InputStreamReader InputStreamWriter

FileReader FileWriter

Java.io.OutputStream class

This abstract class is the superclass of all classes representing an output stream of
bytes. An output stream accepts output bytes and sends them to some sink.

Applications that need to define a subclass of OutputStream must always provide
at least a method that writes one byte of output.

Constructor and Description
 OutputStream() : Single Constructor

Methods:
 void close() : Closes this output stream and releases any system resources

associated with this stream.
 Syntax :public void close()
 throws IOException
 Throws:

IOException
 void flush() : Flushes this output stream and forces any buffered output bytes

to be written out.
 Syntax :public void flush()
 throws IOException
 Throws:

IOException

Character Stream Vs Byte Stream

I/O Stream
A stream is a method to sequentially access a file. I/O Stream means an input
source or output destination representing different types of sources e.g. disk
files.The java.io package provides classes that allow you to convert between
Unicode character streams and byte streams of non-Unicode text.

Stream – A sequence of data.
Input Stream: reads data from source.
Output Stream: writes data to destination.

Character Stream
In Java, characters are stored using Unicode conventions . Character stream
automatically allows us to read/write data character by character. For example
FileReader and FileWriter are character streams used to read from source and write
to destination.

Using Streams

The Stream API is used to process collections of objects. A stream is a sequence of
objects that supports various methods which can be pipelined to produce the

desired result. Streams don't change the original data structure, they only provide
the result as per the pipelined methods.

Using File Class

The File class is Java’s representation of a file or directory path name. Because file
and directory names have different formats on different platforms, a simple string
is not adequate to name them. The File class contains several methods for working
with the path name, deleting and renaming files, creating new directories, listing
the contents of a directory, and determining several common attributes of files and
directories.

 It is an abstract representation of file and directory pathnames.
 A pathname, whether abstract or in string form can be either absolute or

relative. The parent of an abstract pathname may be obtained by invoking the
getParent() method of this class.

 First of all, we should create the File class object by passing the filename or
directory name to it. A file system may implement restrictions to certain
operations on the actual file-system object, such as reading, writing, and
executing. These restrictions are collectively known as access permissions.

 Instances of the File class are immutable; that is, once created, the abstract
pathname represented by a File object will never change.

Java.io.File Class

The File class is Java’s representation of a file or directory path name. Because file
and directory names have different formats on different platforms, a simple string
is not adequate to name them. The File class contains several methods for working
with the path name, deleting and renaming files, creating new directories, listing
the contents of a directory, and determining several common attributes of files and
directories.

 It is an abstract representation of file and directory pathnames.
 A pathname, whether abstract or in string form can be either absolute or

relative. The parent of an abstract pathname may be obtained by invoking the
getParent() method of this class.

 First of all, we should create the File class object by passing the filename or
directory name to it. A file system may implement restrictions to certain
operations on the actual file-system object, such as reading, writing, and
executing. These restrictions are collectively known as access permissions.

 Instances of the File class are immutable; that is, once created, the abstract
pathname represented by a File object will never change.

Other Stream Classes

Java provides I/O Streams to read and write data where, a Stream represents an
input source or an output destination which could be a file, i/o devise, other

program etc.In general, a Stream will be an input stream or, an output stream.

 InputStream − This is used to read data from a source.

 OutputStream − This is used to write data to a destination.

Based on the data they handle there are two types of streams −

 Byte Streams − These handle data in bytes (8 bits) i.e., the byte stream
classes read/write data of 8 bits. Using these you can store characters,
videos, audios, images etc.

 Character Streams − These handle data in 16 bit Unicode. Using these you
can read and write text data only.

Following diagram illustrates all the input and output Streams (classes) in Java.

Standard Streams

In addition to above mentioned classes Java provides 3 standard streams
representing the input and, output devices.

 Standard Input − This is used to read data from user through input devices.
keyboard is used as standard input stream and represented as System.in.

 Standard Output − This is used to project data (results) to the user through
output devices. A computer screen is used for standard output stream and
represented as System.out.

 Standard Error − This is used to output the error data produced by the

user's program and usually a computer screen is used for standard error
stream and represented as System.err.

Example

Following Java program reads the data from user using BufferedInputStream and
writes it into a file using BufferedOutputStream.

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.FileOutputStream;

import java.io.IOException;

public class BufferedInputStreamExample {

 public static void main(String args[]) throws IOException {

 //Creating an BufferedInputStream object

 BufferedInputStream inputStream = new BufferedInputStream(System.in);

 byte bytes[] = new byte[1024];

 System.out.println("Enter your data ");

 //Reading data from key-board

 inputStream.read(bytes);

 //Creating BufferedOutputStream object

 FileOutputStream out= new FileOutputStream("D:/myFile.txt");

 BufferedOutputStream outputStream = new BufferedOutputStream(out);

 //Writing data to the file

 outputStream.write(bytes);

 outputStream.flush();

 System.out.println("Data successfully written in the specified file");

 }

}

Output

Enter your data
Hi welcome ...

Data successfully written in the specified file

UNIT 5 : APPLET AND SWING

Difference between Application and Applets

A Java program can be classified into two types, one is an Application and another
is an Applet

An applet is a Java program that runs in a Web browser. An applet can be a fully
functional Java application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java
application, including the following −

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not
define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the
applet is downloaded to the user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of the
Web browser or a separate runtime environment.

 The JVM on the user's machine creates an instance of the applet class and
invokes various methods during the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser. The
security of an applet is often referred to as sandbox security, comparing the
applet to a child playing in a sandbox with various rules that must be
followed.

 Other classes that the applet needs can be downloaded in a single Java
Archive (JAR) file.

.Application

An application is a stand-alone java program that runs with the support of a

virtual machine in a client or server-side.

 A java application is designed to perform a specific function to run on any
Java-compatible virtual machine regardless of the computer architecture.

 An application is either executed for the user or for some other application
program.

 Examples of java applications include database programs, development
tools, word processors, text and image editing programs, spreadsheets, web
browsers, etc.

Example

public class Demo {

 public static void main(String args[]) {

 System.out.println(“Welcome ”);

 }

}

Output

Welcome

Applet

 An applet is specifically designed to be executed within an HTML web
document using an external API.

 They are basically small programs, more like the web version of an
application that requires a Java plugin to run on the client browser.

 Applets run on the client-side and are generally used for internet computing.

 When we see an HTML page with an applet in a Java-enabled web browser,
the applet code gets transferred to the system and is finally run by the Java-
enabled virtual machine on the browser.

Example

import java.awt.*;

import java.applet.*;

public class AppletDemo extends Applet{

 public void paint(Graphics g) {

 g.drawString("Welcome ", 50, 50);

 }

}

/* <applet code="AppletDemo.class" width="300" height="300">

 <applet>*/

Life Cycle of an Applet

Four methods in the Applet class gives you the framework on which you build any
serious applet −

 init − This method is intended for whatever initialization is needed for your
applet. It is called after the param tags inside the applet tag have been
processed.

 start − This method is automatically called after the browser calls the init
method. It is also called whenever the user returns to the page containing
the applet after having gone off to other pages.

 stop − This method is automatically called when the user moves off the page
on which the applet sits. It can, therefore, be called repeatedly in the same
applet.

 destroy − This method is only called when the browser shuts down
normally. Because applets are meant to live on an HTML page, you should
not normally leave resources behind after a user leaves the page that
contains the applet.

 paint − Invoked immediately after the start() method, and also any time the
applet needs to repaint itself in the browser. The paint() method is actually
inherited from the java.awt.

Creating an Executable Applet

An applet is a small Internet-based program written in Java, a programming
language for the Web, which can be downloaded by any computer.

Types of applet

 1)Stand alone applet

2)Local applet

Executable applet is nothing but the .class file of applet, which is obtained by
compiling the source code of the applet. Compiling the applet is exactly the same as
compiling an application using following command.

javac appletname.java

The compiled output file called appletname.class should be placed in the same
directory as the source file.

The following are the steps that are involved in developing and testing and applet.

1. Buliding an applet code(.java file)
2. Creating an executable applet(.class file)
3. Designing a web page using HTML
4. Preparing <Applet Tag>
5. Incorporating <Applet> tag into the web page.
6. Creating HTMl file.
7. Testing the applet code.

Creating a basic Applet

Following example demonstrates how to create a basic Applet by extending Applet
Class. You will need to embed another HTML code to run this program.

import java.applet.*;
import java.awt.*;

public class Main extends Applet {
 public void paint(Graphics g) {
 g.drawString("Welcome in Java Applet.",40,20);
 }
}

Now compile the above code and call the generated class in your HTML code as
follows −

<HTML>

https://www.webopedia.com/TERM/A/applet.html
https://www.webopedia.com/TERM/J/Java.html

 <HEAD>
 </HEAD>

 <BODY>
 <div >
 <APPLET CODE = "Main.class" WIDTH = "800" HEIGHT = "500"></APPLET>
 </div>
 </BODY>
</HTML>

Result

The above code sample will produce the following result in a java enabled web
browser.

Welcome in Java Applet.

Designing a Web Page.

Web designing has direct link to visual aspect of a web site. Effective web design is
necessary to communicate ideas effectively.

Web designing is subset of web development. However these terms are used
interchangeably.

Key Points

Design Plan should include the following:

 Details about information architecture.

 Planned structure of site.

 A site map of pages

Wireframe

Wireframe refers to a visual guide to appearance of web pages. It helps to define
structre of web site, linking between web pages and layout of visual elements.

Following things are included in a wireframe:

 Boxes of primary graphical elements

 Placement of headlines and sub headings

 Simple layout structure

 Calls to action

 Text blocks

Web Page Anatomy

A web site includes the following components:

Containing Block

Container can be in the form of page’s body tag, an all containing div tag. Without
container there would be no place to put the contents of a web page.

Logo

Logo refers to the identity of a website and is used across a company’s various
forms of marketing such as business cards, letterhead, brouchers and so on.

Naviagation

The site’s navigation system should be easy to find and use. Oftenly the
anvigation is placed rigth at the top of the page.

Content

The content on a web site should be relevant to the purpose of the web site.

Footer

Footer is located at the bottom of the page. It usually contains copyright, contract

and legal information as well as few links to the main sections of the site.

Whitespace

It is also called as negative space and refers to any area of page that is not
covered by type or illustrations.

Web design Mistakes

One should be aware of the following common mistakes should always keep in
mind:

 Website not working in any other browser other internet explorer.

 Using cutting edge technology for no good reason

 Sound or video that starts automatically

 Hidden or disguised navigation

 100% flash content.

Adding Applet to HTML File

The HTML <applet> tag specifies an applet. It is used for embedding a Java applet
within an HTML document.

Example

<!DOCTYPE html>
<html>

 <head>
 <title>HTML applet Tag</title>
 </head>

 <body>
 <applet code = "newClass.class" width = "300" height = "200"></applet>

 </body>

</html>

Here is the newClass.java file −

import java.applet.*;
import java.awt.*;

public class newClass extends Applet {
 public void paint (Graphics gh) {
 g.drawString("Tutorialspoint.com", 300, 150);
 }
}

Passing Parameters to Applets

Parameters are passed to applets in NAME=VALUE pairs in <PARAM> tags between
the opening and closing APPLET tags. Inside the applet, you read the values passed
through the PARAM tags with the getParameter() method of
the java.applet.Applet class.

The program below demonstrates this with a generic string drawing applet. The
applet parameter "Message" is the string to be drawn.

import java.applet.*;
import java.awt.*;

public class DrawStringApplet extends Applet {

 private String defaultMessage = "Hello!";

 public void paint(Graphics g) {

 String inputFromPage = this.getParameter("Message");

 if (inputFromPage == null) inputFromPage = defaultMessage;
 g.drawString(inputFromPage, 50, 25);

 }

}

You also need an HTML file that references your applet. The following simple HTML
file will do:

<HTML>
<HEAD>

<TITLE> Draw String </TITLE>
</HEAD>

<BODY>
This is the applet:<P>

<APPLET code="DrawStringApplet" width="300" height="50">
<PARAM name="Message" value="Howdy, there!">
This page will be very boring if your
browser doesn't understand Java.

</APPLET>
</BODY>
</HTML>

Of course you are free to change "Howdy, there!" to a "message" of your choice. You
only need to change the HTML, not the Java source code. PARAMs let you
customize applets without changing or recompiling the code.

This applet is very similar to the HelloWorldApplet. However rather than
hardcoding the message to be printed it's read into the

variable inputFromPage from a PARAM element in the HTML.

You pass getParameter() a string that names the parameter you want. This string
should match the name of a PARAM element in the HTML
page. getParameter() returns the value of the parameter. All values are passed as
strings. If you want to get another type like an integer, then you'll need to pass it as
a string and convert it to the type you really want.

The PARAM element is also straightforward. It occurs
between <APPLET> and </APPLET>. It has two attributes of its
own, NAME and VALUE. NAME identifies which PARAM this is. VALUE is the
string value of the PARAM. Both should be enclosed in double quote marks if they
contain white space.

An applet is not limited to one PARAM. You can pass as many named PARAMs to
an applet as you like. An applet does not necessarily need to use all the PARAMs
that are in the HTML. Additional PARAMs can be safely ignored.

Creating Swing Applet and Application

Swing is a tool kit in Java which provides a way to build cross platform user
interfaces. It is built on top of and designed as a replacement for AWT, the other UI

toolkit built into Java.

Example of a Swing application

Swing provides many controls and widgets to build user interfaces with. Swing

class names typically begin with a J such as JButton , JList , JFrame . This is

mainly to differentiate them from their AWT counterparts and in general are one-
to-one replacements. Swing is built on the concept of Lightweight components vs
AWT and SWT's concept of Heavyweight components. The difference between the
two is that the Lightweight components are rendered (drawn) using purely Java
code, such as drawLine and drawImage, whereas Heavyweight components use the
native operating system to render the components.

Some components in Swing are actually heavyweight components. The top-level
classes and any derived from them are heavyweight as they extend the AWT
versions. This is needed because at the root of the UI, the parent windows need to
be provided by the OS. These top-level classes

include JWindow , JFrame, JDialog and JApplet . All Swing components to be

rendered to the screen must be able to trace their way to a root window or one of
those classes.

Using Swing.

 Controls: Buttons, Check Boxes, Lists, Trees, Tables, Combo boxes (dropdown list), Menus,
Text fields

 Displays: Labels, Progress bars, Icons, Tool Tips

 Pluggable look and feels (PLAFs): Windows, CDE/Motif, Mac. Allows for "skinning" the
application without changing any code

 Standard Top-Level Windows: Windows, Frames, Dialogs etc.

 Event Listener APIs

 Key bindings & mnemonics: Allow keystrokes to map to specific actions.

Swing Applet

An applets are client side web based program i.e executes on web browser. Swing
applets are same as AWT applets, the variation is that Swing extends JApplet and

https://commons.wikimedia.org/wiki/File:GC_SwingDemo.jpg

JApplet consists of all the features of Applet because of JApplet is derived
from Applet. JApplet is a high level container that includes panes.

An applets are client side web based program i.e executes on web browser. To write
an applet developer must write access specifier public .

Swing applets are same as AWT applets, the variation is that Swing extends
JApplet and JApplet consists of all the features of Applet because of JApplet is
derived from Applet.

JApplet is a high level container that includes panes.Applet life cycle uses five
methods such as init(), start(), paint(), stop(), destroy() methods.

The init() and destroy() methods of an applet gets executed only once where as
remaining methods of an applet gets executed every time when applet comes into
focus uses start() or lost focus uses stop().

 Syntax

Here class name should extend the Applet and this applet class available in import

java.applet.*; package.

import java.applet.*;

Public class MyApplet extends Applet

 Example

Create a package and import all the required packages.
package swing;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
Create a class that should extend JApplet to inherit the properties.
public class HTMLLabelApplet extends JApplet
Create buttons and labels.
JButton jbtnOne;
 JButton jbtnTwo;

 JLabel jlab;
Call the init() method, where invokeAndWait belongs to Swing utility classes used to update the

GUI thread.Swing is not thread safe and only repaint() is thread safe in swing. If user tries to

update any thing exception will be occured.
public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 guiInit(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }
If Applet is restarted then start() method will be called.

public void start() { }
If Applet is stopped then stop() method will be called.
public void stop() { }
If Applet is destroyed then destroy() method will be called.
public void destroy() { }
Initialize GUI setup and flow layout.
private void guiInit() {
 setLayout(new FlowLayout());
Create buttons, labels and add ActionListeners to the those components.
jbtnOne = new JButton("One");
 jbtnTwo = new JButton("Two");
 jlab = new JLabel("Press a button.");
jbtnOne.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Button One pressed.");
 }
 });
Add components to the content pane.
getContentPane().add(jbtnOne);
 getContentPane().add(jbtnTwo);
 getContentPane().add(jlab);
HTMLLabelApplet.java
package swing;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class HTMLLabelApplet extends JApplet {
 JButton jbtnOne;
 JButton jbtnTwo;

 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 guiInit(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can't create because of "+ exc);
 }
 }
 public void start() {

 }

 public void stop() {

 }
 public void destroy() {

 }
 private void guiInit() {

 setLayout(new FlowLayout());

 // Create buttons and a label.
 jbtnOne = new JButton("One");
 jbtnTwo = new JButton("Two");

 jlab = new JLabel("Press a button.");

 // Add action listeners for the buttons.
 jbtnOne.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Button One pressed.");
 }
 });

 jbtnTwo.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Button Two pressed.");
 }
 });

 // Add the components to the applet's content pane.
 getContentPane().add(jbtnOne);
 getContentPane().add(jbtnTwo);
 getContentPane().add(jlab);
 }
}
Output:
The Swing Applet Output will be as follows. When click on button one and two, it displays

Button one pressed and Button two is pressed.

https://cdn.splessons.com/spf/c81e728d9d4c2f636f067f89cc14862c/wp-content/uploads/2016/05/Splessons-Swing-33.png

Programming using Panes

A layered pane is a Swing container that provides a third dimension for positioning
components: depth, also known as Z order. When adding a component to a
layered pane, you specify its depth as an integer.

Below programs illustrate the use of Pane Class:

Java Program to create a Pane and add label to the Pane and add it to the
stage:
In this program we are creating a Pane named pane and a Label named label.
Now add this label to the pane by passing it as an argument of the constructor
of the pane. Then add the pane to the Scene and the scene to the stage. Call
the show() function to display the final results.

// Java Program to create a Pane
// and add label to the Pane
// and add it to the stage
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.*;
import javafx.scene.layout.*;
import javafx.stage.Stage;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.canvas.*;
import javafx.scene.web.*;
import javafx.scene.layout.Pane;
import javafx.scene.shape.*;

public class Pane_0 extends Application {

 // launch the application
 public void start(Stage stage)
 {

 try {

 // set title for the stage
 stage.setTitle("Pane");

 // create a label
 Label label = new Label("this is Pane example");

 // create a Pane
 Pane pane = new Pane(label);

 // create a scene
 Scene scene = new Scene(pane, 400, 300);

 // set the scene
 stage.setScene(scene);

 stage.show();
 }

 catch (Exception e) {

 System.out.println(e.getMessage());
 }
 }

 // Main Method
 public static void main(String args[])
 {

 // launch the application
 launch(args);
 }
}

Output:

Pluggable Look-and-Feel (PLAF)

The Look and Feel module defines how all of the components in the application
look. Each Java Swing Application has an entirely separate L&F from the rest of
the applications on the computer, including other Java Applications.

Some examples of L&Fs are: Nimbus (really new), Metal, Aqua(Macs only), Windows
Aero & Windows Classic (Windows only), and Motif(Highly customizable by the User
of the Application). There are also many third-party Look and Feels available.

Swing is GUI Widget Toolkit for Java. It is an API for providing Graphical User
Interface to Java Programs. Unlike AWT, Swing components are written in Java
and therefore are platform-independent. Swing provides platform specific Look and
Feel and also an option for pluggable Look and Feel, allowing application to have
Look and Feel independent of underlying platform.

Initially there were very few options for colors and other settings in Java Swing,
that made the entire application look boring and monotonous. With the growth in

Java framework, new changes were introduced to make the UI better and thus
giving developer opportunity to enhance the look of a Java Swing Application.

“Look” refers to the appearance of GUI widgets and “feel” refers to the way

the widgets behave.

1. CrossPlatformLookAndFeel: this is the “Java L&F” also known as “Metal”
that looks the same on all platforms. It is part of the Java API
(javax.swing.plaf.metal) and is the default.

2. SystemLookAndFeel: here, the application uses the L&F that is default to the
system it is running on. The System L&F is determined at runtime, where the
application asks the system to return the name of the appropriate L&F.
For Linux and Solaris, the System L&Fs are “GTK+” if GTK+ 2.2 or later is
installed, “Motif” otherwise. For Windows, the System L&F is “Windows”.

3. Synth: the basis for creating your own look and feel with an XML file.
4. Multiplexing: a way to have the UI methods delegate to a number of different

look and feel implementations at the same time.

Labels

The object of JLabel class is a component for placing text in a container. It is used
to display a single line of read only text. The text can be changed by an application
but a user cannot edit it directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

public class JLabel extends JComponent implements SwingConstants, Accessible

TextFields

The object of a JTextField class is a text component that allows the editing of a
single line text. It inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

public class JTextField extends JTextComponent implements SwingConstants

Buttons

The JButton class is used to create a labeled button that has platform independent
implementation. The application result in some action when the button is pushed.
It inherits AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

public class JButton extends AbstractButton implements Accessible

ToggleButtons

JToggleButton is used to create toggle button, it is two-states button to switch on
or off.

Nested Classes

Modifier and Type Class Description

protected class JToggleButton.AccessibleJToggleButton This class implements accessibility support for the JToggleButton class.

static class JToggleButton.ToggleButtonModel The ToggleButton model

CheckBoxs

The JCheckBox class is used to create a checkbox. It is used to turn an option on
(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off" or
from "off" to "on ".It inherits JToggleButton class.

JCheckBox class declaration

Let's see the declaration for javax.swing.JCheckBox class.

public class JCheckBox extends JToggleButton implements Accessible

RadioButtons

The JRadioButton class is used to create a radio button. It is used to choose one
option from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

Let's see the declaration for javax.swing.JRadioButton class.

https://www.javatpoint.com/java-jtogglebutton

public class JRadioButton extends JToggleButton implements Accessible

Viewports

The JViewport class is used to implement scrolling. JViewport is designed to
support both logical scrolling and pixel-based scrolling. The viewport's child, called
the view, is scrolled by calling the JViewport.setViewPosition() method.

Scroll Panes

A JscrollPane is used to make scrollable view of a component. When screen size is
limited, we use a scroll pane to display a large component or a component whose
size can change dynamically.

Scroll Bars

The object of JScrollbar class is used to add horizontal and vertical scrollbar. It is
an implementation of a scrollbar. It inherits JComponent class.

JScrollBar class declaration

Let's see the declaration for javax.swing.JScrollBar class.

public class JScrollBar extends JComponent implements Adjustable, Accessible

List

The object of JList class represents a list of text items. The list of text items can be
set up so that the user can choose either one item or multiple items. It inherits
JComponent class.

JList class declaration

Let's see the declaration for javax.swing.JList class.

public class JList extends JComponent implements Scrollable, Accessible

ComboBox

The object of Choice class is used to show popup menu of choices. Choice selected
by user is shown on the top of a menu. It inherits JComponent class.

JComboBox class declaration

Let's see the declaration for javax.swing.JComboBox class.

public class JComboBox extends JComponent implements ItemSelectable, ListD

ataListener, ActionListener, Accessible

https://www.javatpoint.com/java-jmenuitem-and-jmenu
https://www.javatpoint.com/java-jcomponent

Progress Bars

The JProgressBar class is used to display the progress of the task. It inherits
JComponent class.

JProgressBar class declaration

Let's see the declaration for javax.swing.JProgressBar class.

public class JProgressBar extends JComponent implements SwingConstants, Ac

cessible

Menu Bar

The JMenuBar class is used to display menubar on the window or frame. It may
have several menus.

The object of JMenu class is a pull down menu component which is displayed from
the menu bar. It inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in
a menu must belong to the JMenuItem or any of its subclass.

JMenuBar class declaration

public class JMenuBar extends JComponent implements MenuElement, Accessi

ble

ToolBars

JToolBar container allows us to group other components, usually buttons with
icons in a row or column. JToolBar provides a component which is useful for
displaying commonly used actions or controls.

Layered Panes

The JLayeredPane class is used to add depth to swing container. It is used to
provide a third dimension for positioning component and divide the depth-range
into several different layers.

JLayeredPane class declaration

public class JLayeredPane extends JComponent implements Accessible

Tabbed Panes

The JTabbedPane class is used to switch between a group of components by

clicking on a tab with a given title or icon. It inherits JComponent class.

JTabbedPane class declaration

Let's see the declaration for javax.swing.JTabbedPane class.

public class JTabbedPane extends JComponent implements Serializable, Accessi

ble, SwingConstants

Split Panes

JSplitPane is used to divide two components. The two components are divided

based on the look and feel implementation, and they can be resized by the user. If
the minimum size of the two components is greater than the size of the split pane,
the divider will not allow you to resize it.

The two components in a split pane can be aligned left to right using
JSplitPane.HORIZONTAL_SPLIT, or top to bottom using
JSplitPane.VERTICAL_SPLIT. When the user is resizing the components the
minimum size of the components is used to determine the maximum/minimum
position the components can be set to.

 Layouts

The LayoutManagers are used to arrange components in a particular manner.
LayoutManager is an interface that is implemented by all the classes of layout
managers. There are following classes that represents the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9.javax.swing.SpringLayout etc.

Windows

JWindow is a part of Java Swing and it can appear on any part of the users
desktop. It is different from JFrame in the respect that JWindow does not have a
title bar or window management buttons like minimize, maximize, and close, which
JFrame has. JWindow can contain several components such as buttons and labels.

Constructor of the class are:

1. JWindow() : creates an empty Window without any specified owner
2. JWindow(Frame o) :creates an empty Window with a specified frame as its

owner
3. JWindow(Frame o) : creates an empty Window with a specified frame as its

owner

4. JWindow(Window o) : creates an empty Window with a specified window as
its owner

5. JWindow(Window o, GraphicsConfiguration g) : creates an empty window
with a specified window as its owner and specified graphics Configuration.

6. JWindow(GraphicsConfiguration g) :creates an empty window with a
specified Graphics Configuration

Dialog Boxes

Java JOptionPane. The JOptionPane class is used to provide standard dialog
boxes such as message dialog box, confirm dialog box and input dialog box.
These dialog boxes are used to display information or get input from the user.
The JOptionPane class inherits JComponent class.

Inner Frame

Some times you will need to display a frame till the application is running and
want to do operations on an another frames lying within the internal frames.

To create internal frames in Java you may use javax.swing.JInternalFrame class.

This class has various constructors using which you can create frames within a
frame with different features like maximizable/not maximizable internal frame,
resizable/not resizable internal frame, closable/not closable internal frame.

 ---oOo----

	Variables
	Data Types
	Java Primitive Data Types

	Decision Making in Java (if, if-else, switch, break, continue, jump)
	Methods
	Overloading
	Nesting of Methods
	Overriding Method
	Abstract Classes
	Arrays
	Two Dimensional Arrays
	Two Dimensional Array Declaration

	Strings
	String Array Declaration
	Creating a String
	String literal
	Using New Keyword

	String Methods

	StringBuffer class
	Declaring Interfaces
	Creating a Package
	Example

	UNIT IV : MULTITHREADING, EXCEPTION HANDLING, FILES AND CREATING THREADS
	Thread Life Cycle:
	Thread Exception
	Advantage of Multithread
	Method in Object and Thread Class
	How to Create Thread
	Understand Exception in Threads.
	Thread Priority
	Synchronization
	Create a Thread by Implementing a Runnable Interface
	Step 1
	Step 2
	Step 3
	Example
	Output
	Example (1)
	Output (1)

	Example
	Output
	Concept of Stream
	Byte Streams
	Character Streams

	Standard Streams

	Java.io.InputStream Class in Java
	Java.io.OutputStream class
	Using File Class
	Standard Streams
	Example
	Output
	An application is a stand-alone java program that runs with the support of a virtual machine in a client or server-side.
	Example (1)
	Output (1)
	Applet
	Example (2)
	Life Cycle of an Applet
	Result
	Designing a Web Page.
	Wireframe
	Web Page Anatomy
	Containing Block
	Logo
	Naviagation
	Content
	Footer
	Whitespace

	Web design Mistakes
	Adding Applet to HTML File
	Example (3)

	Passing Parameters to Applets
	Syntax
	Example
	Pluggable Look-and-Feel (PLAF)

	Labels
	JLabel class declaration

	TextFields
	JTextField class declaration

	Buttons
	JButton class declaration

	ToggleButtons
	Nested Classes

	CheckBoxs
	JCheckBox class declaration

	RadioButtons
	JRadioButton class declaration

	Viewports
	Scroll Panes
	Scroll Bars
	JScrollBar class declaration

	List
	JList class declaration

	ComboBox
	JComboBox class declaration

	Progress Bars
	JProgressBar class declaration

	Menu Bar
	JMenuBar class declaration

	ToolBars
	Layered Panes
	JLayeredPane class declaration

	Tabbed Panes
	JTabbedPane class declaration

	Split Panes
	Layouts

	Windows

